PRELIMINARY NOTE

Structure and bonding of $(OC)_4Cr(PMe_2)_2Cr(CO)_4$ and $(OC)_4Mn(PMe_2)_2Mn(CO)_4$ in solution as established by IR combination spectra

We have extended the usefulness of infrared spectra for the determination of the structures of metal carbonyl derivatives in solution¹, by making use of combination spectra²⁻⁵ to assess symmetry and furnish evidence for metal-metal bonding. Theory⁶ predicts that when two conditions are satisfied, and only then, dinuclear metal carbonyls will have a "high frequency inactive mode", v_1 , in the CO stretching region, such that the following relationships hold:

$$v_{\max}(c) = v_1 + v_2$$
 (1)

$$v_{\max}(f) = v_2 \tag{2}$$

$$v_1 > v_2 \tag{3}$$

These conditions are:

(a) the point group of the molecules must be of suitably high symmetry. Specifically, it must include C_i , C_{nh} , S_n or D_n . (C_{2h} , which contains C_i , satisfies this condition; C_{2v} does not).

(b) there must exist a direct interaction between CO groups on different metals, such as could arise^{2,3,6} from a metal-metal bond.

If (a) is not satisfied, v_1 will itself be IR active. If (b) is not satisfied, v_1 will differ from the IR active v_2 only to a small extent (because of non-bonded interactions).

We have examined the fundamental and combination spectra of several dinuclear metal carbonyls in order to assess these predictions. The results are shown in Table 1.

(I) is known⁷ to be of symmetry C_{2h} (staggered) in the solid. In solution it could be eclipsed (C_{2v}) , gauche, or intermediate (C_2) . Our results show, however, that the staggered configuration is retained. (II) is known to be transoid (C_{2h}) in the solid⁸ but cisoid (C_{2v}) in solution⁹. As predicted, it does not have a high frequency inactive mode.

(III) may be assumed to be D_{2h} in analogy with $Mn_2(CO)_8Br_2^{10}$, satisfying condition (a). Our results confirm this assumption. However, condition (b) is satisfied only by non-bonding interactions, and the separation between v_1 and v_2 is only 22 cm^{-1} . This is 0.4 of the value found in $Mn_2(CO)_{10}^{2.3}$, where there is a metal-metal bond, although simple theory indicates⁶ a value of 0.71 for this ratio, if we could treat the cases as comparable.

(IV) is presumed¹¹ C_{2v} by analogy with Fe₂(CO)₆(SEt)₂¹², a suggestion supported by Mössbauer studies¹³ and since (a) is not satisfied it has no high frequency inactive mode. The excellent agreement between $v_{max}(c)$ and $v_{max}(f)$ in (II) and (IV) indicates that the neglect of anharmonicity in Eqn. (1) does not lead to major errors.

It was not known for certain at the start of this work whether (V) had a D_{2h}

Substance	Possible symmetry in solution	Conditions satisfied by assigned symmetry	Vmax(C) ^b	v _{nax} (f) ^a	Vmax (c)-Vmax (f)	Inference
I = {C ₅ H ₅ M ₀ (CO) ₃ } ₂	$\begin{cases} C_{2h} \\ C_{2u} \\ C_{2} \\ C_{2} \end{cases}$	а,b b b	3958	1961	1997	C _{2h} correct
$II = \{C_3H_3Fe(CO)_2\}_2$	$C_{2\mu}$	þ	4110	2054	2056	
III = $(OC)_4$ Mn(PMe ₂) ₂ Mn(CO) ₄	$D_{2h}(?)$	a (?)	4106	2042	2064	D_{2h} correct
$IV = (OC)_3 Fe(PMe_2)_2 Fe(CO)_3$	$C_{2\nu}$	q	4098	2049	2049	
$V = (OC)_4 Cr (PMe_2)_2 Cr (CO)_4$	$\left\{ \begin{array}{l} D_{2h} \\ C_{2h} \end{array} \right.$	a,b	4058	2011	2047	D _{2h} correct; effect (b) considerable
^e CCl ₄ solution; Perkin-Elmer 225, spectrometer (grant of Science Reset Estimated error $\sim \pm 2 \text{ cm}^{-1}$.	. Cyclohexane solution g arch Council to P.S.B.) 9	ives better resolution but sli D-100 % transmission range.	ght shift. ^b (Base lines a	CCI ₄ solutio ad calibratic	n, saturated, 1 cm pi n (with <i>p</i> -dichlorobe	ath length. Beckman DK2-A nzene) essential for each run.

J. Organometal. Chem., 10 (1967) P11-P13

TABLE 1

•

structure with a planar M_2P_2 ring [as in (III)], or a C_{2r} structure with the ring buckled [as in (IV)]. As Table 1 shows, the D_{2h} structure is correct, and the metalmetal bond required to explain the observed diamagnetism¹⁴ gives rise to an increased interaction. $v_1 - v_2$ is nearly twice as large as in (III) (having 0.66 of the value in $Mn_2(CO)_{10}$ where theory⁶ requires 0.71), and is equal to that observed in (I) where the metal-metal bond must be real since it is the only factor holding the two halves of the molecule together. The exact agreement between (I) and (V) is presumably fortuitous. These conclusions are supported by the results of an independent crystallographic study¹⁵ of a derivative of the molybdenum equivalent of (V).

The combination band method of structure investigation has unique advantages for determination of the structure of polynuclear metal carbonyls in solution. Normal IR evidence from the fundamental region has been used as evidence for high symmetry but the method rests on the absence of bands which could have been "lost" through accidental degeneracy. Combination studies eliminate this source of error by evaluating the "missing" frequency. Raman studies (for which combination studies are to some extent a substitute) require equipment less widely available, and may be difficult with coloured and photosensitive materials. X-ray studies are lengthy and give information only about the solid.

Department of Chemistry, University of Glasgow, Glasgow, W.2 (Great Britain)

Imperial Chemical Industries Ltd., Petrochemical and Polymer Laboratory The Heath, Runcorn, Cheshire (Great Britain)

- I F. A. COTTON in J. LEWIS AND R. G. WILKINS (Eds.), Modern Co-ordination Chemistry, Interscience, New York, 1960, pp. 333 ff.
 - 2 J. LEWIS, A. R. MANNING, J. R. MILLER, M. J. WARE AND F. NYMAN, Nature, 207 (1965) 142.
 - 3 F. A. COTTON AND R. M. WING, Inorg. Chem., 4 (1965) 1328.
 - 4 J. M. SMITH AND LL. H. JONES, J. Mol. Spec., 20 (1966) 248.
 - 5 J. M. SMITH. Ph.D. Thesis, University of California, Los Angeles, 1967.
 - 6 P. S. BRATERMAN AND D. T. THOMPSON, in preparation.
 - 7 F. L. WILSON AND D. P. SHOEMAKER, J. Chem. Phys., 27 (1957) 809.
 - 8 O. S. MILLS, Acta Cryst., 11 (1958) 620.
- 9 F. A. COTTON, A. D. LIEHR AND G. WILKINSON, J. Inorg. Nucl. Chem., 1 (1955) 175.
- 10 L. F. DAHL AND C.-H. WEI, Acta Cryst., 16 (1963) 611.
- 11 D. T. THOMPSON, J. Organometal. Chem., 4 (1965) 74.
- 12 L. F. DAHL AND C.-H. WEI, Inorg. Chem., 2 (1963) 328.
- 13 T. C. GIBB, R. GREATREX, N. N. GREENWOOD AND D. T. THOMPSON, J. Chem. Soc. (A), in the press.
- 14 J. CHATT AND D. A. THORNTON, J. Chem. Soc., (1964) 1005.
- 15 R. H. B. MAIS, P. G. OWSTON AND D. T. THOMPSON, J. Chem. Soc. (A), in the press.

Received July 5th, 1967

J. Organometal. Chem., 10 (1967) P11-P13

P. S. BRATERMAN

D. T. THOMPSON